

The chain rule

Introduction

The **chain rule** is used when it is necessary to differentiate a function of a function.

This rule is summarised here.

1. The chain rule

Consider the function $y = (\sin x)^3$. This process involves cubing the function $\sin x$.

Consider also the function $y = \log_e(x^3 + 5x)$. Here we are finding the logarithm of the function $x^3 + 5x$.

In both cases we are finding a function of a function.

The chain rule is used to differentiate such composite functions and is illustrated in the examples which follow.

Example

Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ when $y = \sin(5x+3)$.

Solution

Notice that 5x + 3 is a function of x, so sin(5x + 3) is a function of a function.

To simplify the problem we can introduce a new variable z and write z = 5x + 3 so that y becomes

 $y = \sin z$

Then, differentiating this with respect to z,

$$\frac{\mathrm{d}y}{\mathrm{d}z} = \cos z$$

Now, in fact, we want $\frac{\mathrm{d}y}{\mathrm{d}x}$. The chain rule states

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}z} \times \frac{\mathrm{d}z}{\mathrm{d}x}$$

So

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos z \times 5$$
 since $\frac{\mathrm{d}z}{\mathrm{d}x} = 5$

Then, finally

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\cos z = 5\cos(5x+3)$$

www.mathcentre.ac.uk

© Pearson Education Ltd 2000

The chain rule: if y(z) is a function of z and z(x) is a function of x, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}z} \times \frac{\mathrm{d}z}{\mathrm{d}x}$$

Example

Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ when $y = \mathrm{e}^{(x^2)}$.

Solution

 x^2 is a function, so $e^{(x^2)}$ is a function of a function. If we let $z = x^2$, then $y = e^z$. Then

$$\frac{\mathrm{d}z}{\mathrm{d}x} = 2x$$
 and $\frac{\mathrm{d}y}{\mathrm{d}z} = \mathrm{e}^z$

so that, using the chain rule,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}z} \times \frac{\mathrm{d}z}{\mathrm{d}x} = \mathrm{e}^{z} \times 2x = 2x\mathrm{e}^{(x^{2})}$$

Example

If $y = \sin^3 x$ find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

Solution

First of all note that $\sin^3 x$ means $(\sin x)^3$. Therefore y can be written $y = (\sin x)^3$, so that this is a function of a function.

If we let $z = \sin x$ then $y = z^3$. It follows that

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \cos x$$
 and $\frac{\mathrm{d}y}{\mathrm{d}z} = 3z^2$

Then, using the chain rule,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}z} \times \frac{\mathrm{d}z}{\mathrm{d}x} = 3z^2 \times \cos x = 3\sin^2 x \cos x$$

Exercises

In each case find $\frac{dy}{dx}$. 1. $y = \sin(x^2)$. 2. $y = (\sin x)^2$. 3. $y = \log_e(x^2 + 1)$. 4. $y = (2x + 7)^8$ 5. $y = e^{2x-3}$

Answers

1. $2x \cos(x^2)$. 2. $2\sin x \cos x$. 3. $\frac{2x}{x^2+1}$. 4. $16(2x+7)^7$. 5. $2e^{2x-3}$.

www.mathcentre.ac.uk

